The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors

نویسندگان

  • Julie Nabias
  • Aktham Asfour
  • Jean-Paul Yonnet
چکیده

The flexibility of amorphous Giant Magneto-Impedance (GMI) micro wires makes them easy to use in several magnetic field sensing applications, such as electrical current sensing, where they need to be deformed in order to be aligned with the measured field. The present paper deals with the bending impact, as a parameter of influence of the sensor, on the GMI effect in 100 µm Co-rich amorphous wires. Changes in the values of key parameters associated with the GMI effect have been investigated under bending stress. These parameters included the GMI ratio, the intrinsic sensitivity, and the offset at a given bias field. The experimental results have shown that bending the wire resulted in a reduction of GMI ratio and sensitivity. The bending also induced a net change in the offset for the considered bending curvature and the set of used excitation parameters (1 MHz, 1 mA). Furthermore, the field of the maximum impedance, which is generally related to the anisotropy field of the wire, was increased. The reversibility and the repeatability of the bending effect were also evaluated by applying repetitive bending stresses. The observations have actually shown that the behavior of the wire under the bending stress was roughly reversible and repetitive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma Irradiation Effect on Asymmetric Giant Magnetoimpedance of Co68.15Fe4.35Si12.5B15 Amorphous Alloy

The giant magneto impedance (GMI) effect is a large variation in the electrical impedance of a magnetic conductor when subjected to a static magnetic field. The sensitivity to the direction (AGMI) and magnitude of applied  magnetic field    and also linearity levels   of this  effect are three important parameters in magnetic sensors application. A suitable annealing procedure can be used to ac...

متن کامل

Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, i...

متن کامل

Bi-Directional Giant Magneto Impedance Sensor

A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were characterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (...

متن کامل

Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor

The giant magneto-impedance (GMI) magnetic sensor based on the amorphous wire has been believed to be tiny dimensions, high sensitivity, quick response, and small power consumption. This kind of sensor is usually working under a bias magnetic field that is called the sensor's operating point. However, the changes in direction and intensity of the external magnetic field, or the changes in sensi...

متن کامل

Development of Ultra-Thin Glass-Coated Amorphous Microwires for High Frequency Magnetic Sensors Applications

The giant magneto-impedance (GMI) effect has been studied in 3 different families of amorphous wires: conventional amorphous wires (125 μm in diameter), cold drawn wires (50 and 20 μm in diameter) and thin glass coated amorphous microwires (with metallic nucleus diameter of about 15 μm). These wires have been investigated in the frequency range 1 – 500 MHz. A remarkable difference in the magnet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017